# HIGHLIGHTS IN EMATOLOGIA

TREVISO 7-8 NOVEMBRE 2025



# LINFOMA DI HODGKIN CHE COSA C'È DI NUOVO IN TERMINI PROGNOSTICI?

#### Alessandro Broccoli

IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico «Sant'Orsola-Malpighi» Department of Medical and Surgical Sciences, University of Bologna, Italy Institute of Hematology «L. e A. Seràgnoli», Bologna, Italy

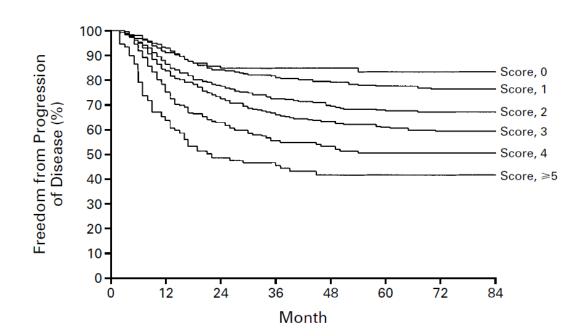


# **HIGHLIGHTS IN EMATOLOGIA**

### Disclosures: ALESSANDRO BROCCOLI

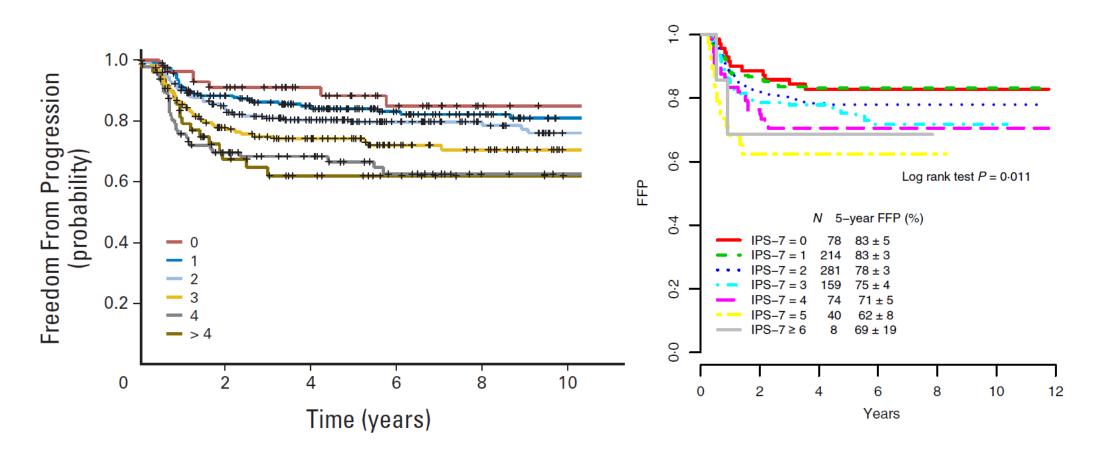
| Company name    | Research support | Consultant | Stockholder | Speakers<br>bureau | Advisory board | Other |
|-----------------|------------------|------------|-------------|--------------------|----------------|-------|
| Sandoz          | Х                |            |             |                    | Х              | Х     |
| Gilead          |                  |            |             | X                  | X              | X     |
| Merck           | X                |            |             |                    |                | Х     |
| Janssen         | X                |            |             | X                  |                | X     |
| Takeda          |                  | x          |             | x                  | X              | X     |
| Kyowa Kirin     | X                |            |             | x                  | X              | X     |
| Incyte          |                  |            |             |                    |                | Х     |
| Recordati       |                  |            |             |                    |                | X     |
| Astra Zeneca    |                  |            |             | X                  | X              |       |
| Roche           |                  |            |             | X                  |                | X     |
| GlaxoSmithKline |                  | x          |             | X                  | X              |       |
| BeOne           | X                |            |             | X                  | X              | X     |
| Eli Lilly       |                  |            |             |                    |                | Х     |
| SOBI            |                  |            |             | x                  |                |       |
| SERB Pharma     |                  | Х          |             |                    | x              |       |

## Prognostication for early- and advanced-stage Hodgkin lymphoma


- Prognostic models based on pre-treatment factors can help identify patients with early- and advancedstage classic Hodgkin lymphoma who are at increased risk of relapse (or death).
- In early-stage disease, EORTC and GHSG classifications have been followed for the past 40-50 years.
- Original EORTC early-stage prognostic factors date back to early '70s, when staging laparotomy and mantle radiation (alone) were the predominant ways of treatment.
- In advanced-stage disease, the International Prognostic Score (IPS7) had been a standard index in classic Hodgkin lymphoma for 25 years.
- Performance of IPS7 decreased when analyzed in patients treated in a more recent era, and is almost surpassed when regimens containing newer drugs are applied frontline (poor calibration).
- Updated analyses with modern clinical trial and registry (real-world data) is desired.

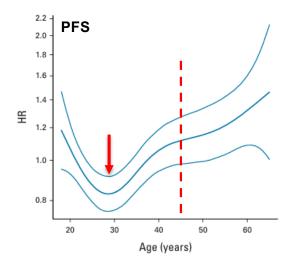
#### A PROGNOSTIC SCORE FOR ADVANCED HODGKIN'S DISEASE

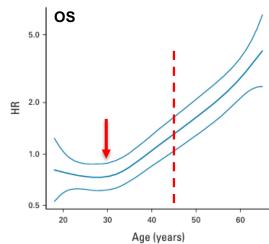
DIRK HASENCLEVER, Ph.D., AND VOLKER DIEHL, M.D., FOR THE INTERNATIONAL PROGNOSTIC FACTORS PROJECT ON ADVANCED HODGKIN'S DISEASE\*

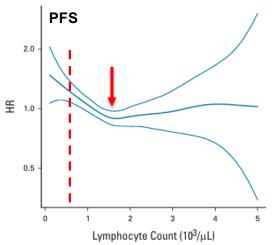

| The Final | Cox | REGRESSION | Model. |
|-----------|-----|------------|--------|
|-----------|-----|------------|--------|

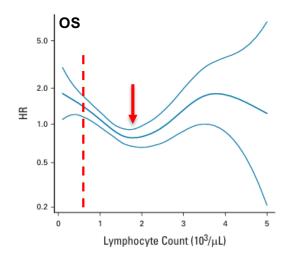
| FACTOR                                                            | Log Hazard<br>Ratio | P<br>Value | RELATIVE<br>RISK |
|-------------------------------------------------------------------|---------------------|------------|------------------|
| Serum albumin, <4 g/dl                                            | $0.40 \pm 0.10$     | < 0.001    | 1.49             |
| Hemoglobin, <10.5 g/dl                                            | $0.30 \pm 0.11$     | 0.006      | 1.35             |
| Male sex                                                          | $0.30\pm0.09$       | 0.001      | 1.35             |
| Stage IV disease                                                  | $0.23\pm0.09$       | 0.011      | 1.26             |
| Age, ≥45 yr                                                       | $0.33 \pm 0.10$     | 0.001      | 1.39             |
| White-cell count, ≥15,000/mm <sup>3</sup>                         | $0.34 \pm 0.11$     | 0.001      | 1.41             |
| Lymphocyte count, <600/mm <sup>3</sup> or <8% of white-cell count | $0.31 \pm 0.10$     | 0.002      | 1.38             |




Treatments started **before January 1992**. More than 75 percent of the patients were treated with standard doxorubicin-containing regimens; 20 percent received MOPP or a similar regimen. Sixty percent of the patients received no radiotherapy. Thirty-three percent received full or selected involved field irradiation; 2 percent underwent more extensive irradiation with a mantle or inverted-Y field, and 5 percent underwent subtotal or total nodal irradiation.


#### Performance of IPS7 in modern era



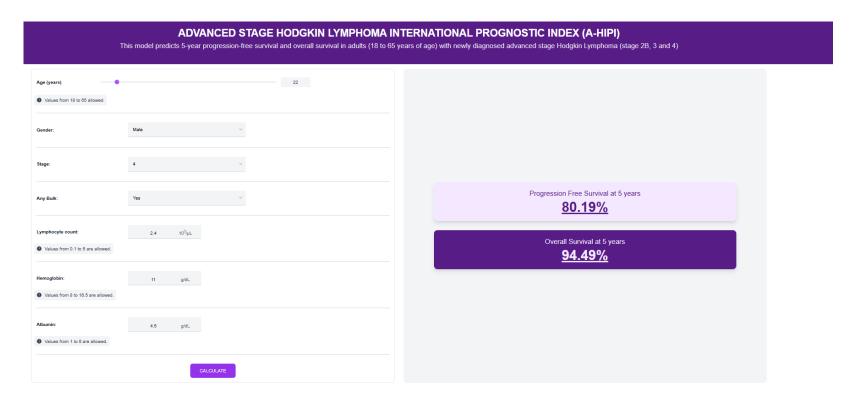


The Advanced-Stage Hodgkin Lymphoma
International Prognostic Index: Development and
Validation of a Clinical Prediction Model From
the HoLISTIC Consortium

- Why did IPS7 have to be refined? Due to improvements in diagnostic accuracy, use of PET in more
  accurate stage definition, optimization of drug dosing and treatment dose intensity, treatment adaptation
  according to early PET results, improved post-relapse salvage treatment modalities.
- How was it performed?
  - A population of adult patients with newly diagnosed classic Hodgkin lymphoma aged 18-65 years and with advanced stage (IIB, III, IV).
  - Model developed on 4,022 patients from 8 clinical trials enrolling advanced-stage patients between 1996 and 2014; validated on 1,431 patients from 4 cancer registries (between 1996 and 2019).
- Continuous variables (e.g. age, laboratory parameters) were no more considered as dichotomized.
- Novel non-linear relationships between age and absolute lymphocyte counts have been identified, along with unique prognostic variables significant for PFS versus OS.
- An online calculator to assist clinicians and patients in estimating individualized prognosis.



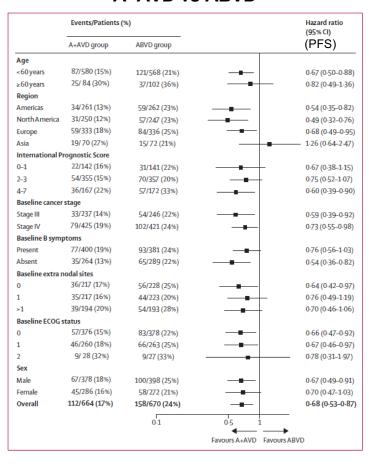




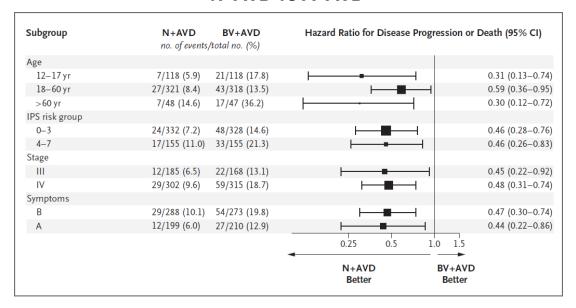



The Advanced-Stage Hodgkin Lymphoma
International Prognostic Index: Development and
Validation of a Clinical Prediction Model From
the HoLISTIC Consortium

|                                     | 5-year PFS<br>HR (95% CI) | 5-year OS<br>HR (95% CI) |
|-------------------------------------|---------------------------|--------------------------|
| OO Age (years)                      |                           |                          |
| Linear effect in 18 to 30 years     | 0.97 (0.95, 1.00)         | 0.98 (0.94, 1.02)        |
| Linear effect in >30 years          | 1.02 (1.01, 1.02)         | 1.05 (1.04, 1.07)        |
| Female                              |                           | 0.78 (0.61, 1.00)        |
| O O Stage                           |                           |                          |
| Stage IIB                           |                           |                          |
| Stage III                           | 1.23 (1.03, 1.48)         |                          |
| Stage IV                            | 1.53 (1.27, 1.83)         | 1.33 (1.04, 1.70)        |
| O Bulk                              |                           | 1.37 (1.05, 1.78)        |
| <ul><li>Hemoglobin (g/dL)</li></ul> |                           | 0.88 (0.81, 0.96)        |
| OO Albumin (g/dL)                   | 0.74 (0.66, 0.82)         | 0.67 (0.53, 0.84)        |
| OO Lymphocyte count (10^3/mm³)      |                           |                          |
| Linear effect in .1 to 2            | 0.75 (0.65, 0.87)         | 0.61 (0.46, 0.80)        |
| Linear effect in 2 to 5             | 1.21 (0.96, 1.52)         | 1.49 (0.99, 2.22)        |

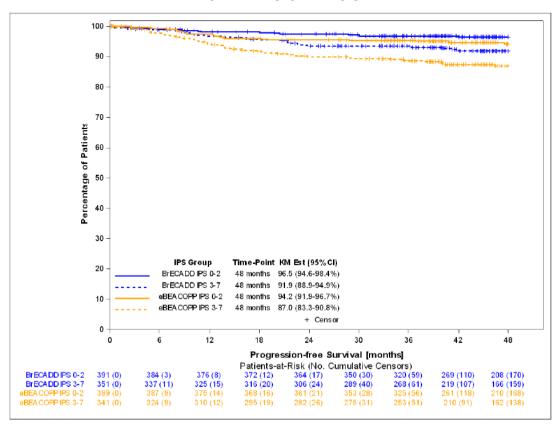

#### **TREVISO, 7-8 NOVEMBRE 2025**

The Advanced-Stage Hodgkin Lymphoma
International Prognostic Index: Development and
Validation of a Clinical Prediction Model From
the HoLISTIC Consortium




# Significance of IPS7 in contemporary randomized clinical trials with new drugs (1)

#### A+AVD vs ABVD

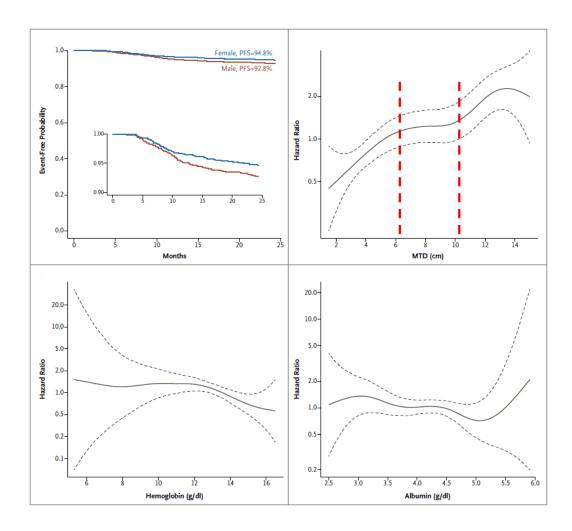



#### N+AVD vs A+AVD



### Significance of IPS7 in contemporary randomized clinical trials with new drugs (2)

#### **BrECADD** vs eBEACOPP



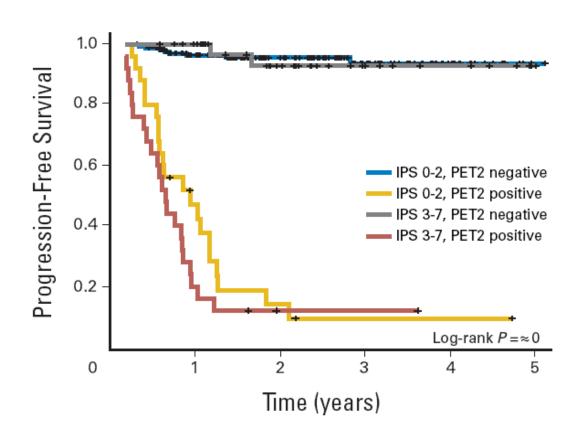

### Shaping treatment according to risk factors and stage in Hodgkin lymphoma

| Category                | Features                                                                                                                                                                                                                         | Approach                                                                                                                                                                                                                     |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Early-stage favorable   | Stage I-II with no risk factors                                                                                                                                                                                                  | ABVD x 2 + 20 Gy IFRT (non PET-adapted) <sup>4</sup> ABVD x 2 + 20 Gy IFRT (PET-adapted) <sup>5</sup> ABVD x 3 + 30 Gy IFRT (PET-adapted) <sup>6</sup>                                                                       |
| Early-stage unfavorable | <ul> <li>Stage I-II with risk factors¹-³</li> <li>Age ≥ 50 years (*)</li> <li>Large mediastinal mass</li> <li>B symptoms</li> <li>≥ 3 involved lymph node areas</li> <li>Elevated ESR</li> <li>Extranodal involvement</li> </ul> | ABVD x 4 + 30 Gy IFRT (PET-adapted) <sup>6</sup> ABVD x 6 (PET-adapted) <sup>6</sup> ABVD x 2 → AVD x 4 (PET-adapted) <sup>7</sup>                                                                                           |
| Advanced stage          | Stage II B with risk factors<br>Stage III-IV                                                                                                                                                                                     | ABVD x 2 $\rightarrow$ AVD x 4 (PET2 negative) <sup>7</sup><br>ABVD x 2 $\rightarrow$ BEACOPP (PET2 positive) <sup>8,9</sup><br>A-AVD x 6 (non PET-guided) <sup>10</sup><br>N-AVD, BrECADD (non PET-guided) <sup>11,12</sup> |

(\*) EORTC only

Tubiana M. Cancer Res, 1971; 31: 1801-1810 — 2. Tubiana M. Natl Cancer Inst Monogr, 1973; 36: 513-530 — 3. Tubiana M. Int J Radiat Oncol Biol Phys, 1985; 11: 23-30
 Engert A. N Engl J Med, 2010; 363: 640-652 — 5. Fuchs M. J Clin Oncol, 2019; 37: 2835-2845 — 6. Federico M. J Clin Oncol, 2024; 42: 19-25
 Johnson P. N Engl J Med, 2016; 374: 2419-2429 — 8. Press OW. J Clin Oncol, 2016; 34: 2020-2027 — 9. Gallamini A. J Clin Oncol, 2018; 36: 454-462
 Ansell SM. N Engl J Med, 2022; 387: 310-320 — 11. Herrera AF. N Engl J Med, 2024; 391: 1379-1389 — 12. Borchmann P. Lancet, 2024; 404: 341-352




### An Individualized Prediction Model for Early-Stage Classic Hodgkin's Lymphoma

#### PFS-related variables

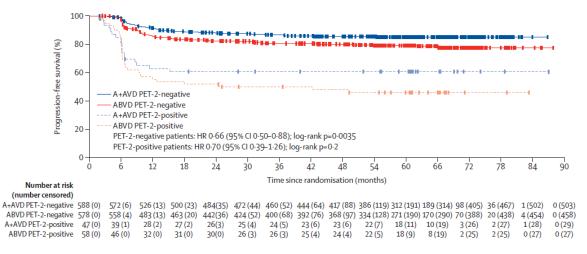
|                              | Development<br>(N=3000) | Validation 1<br>(N=1488) | Validation 2<br>(N=872) |
|------------------------------|-------------------------|--------------------------|-------------------------|
| Age (years), mean (SD)       | 34 (12)                 | 34 (12)                  | 38 (14)                 |
| Female sex                   | 51%                     | 53%                      | 46%                     |
| Stage                        |                         |                          |                         |
| Stage I                      | 23%                     | 14%                      | 25%                     |
| Stage IIA                    | 55%                     | 60%                      | 46%                     |
| Stage IIB                    | 22%                     | 26%                      | 30%                     |
| MTD, mean (SD)               | 6.5 (3.5)               | 6.5 (3.3)                | 5.3 (2.8)               |
| Hemoglobin (g/dL), mean (SD) | 13.0 (1.6)              | 13.1 (1.6)               | 13.4 (1.8)              |
| Albumin (g/dL), mean (SD)    | 4.2 (0.5)               | 4.0 (0.5)                | 4.1 (0.5)               |
| 2-year PFS (KM)              | 93.7%                   | 90.3%                    | 91.6%                   |

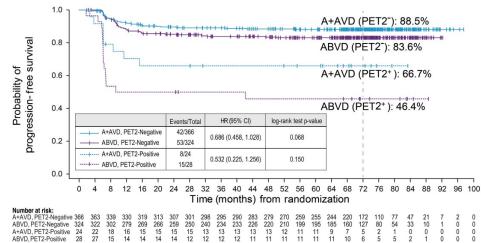
3,000 patients from 4 seminal early-stage trials with accrual from 1996 to 2011; two model validation cohorts with 2,360 patients from 5 cancer registries, diagnosed between 1996 and 2019 (treated with curative intent and outside clinical trials).

### Predictive role of PET2 in Hodgkin lymphoma and its superiority to IPS7



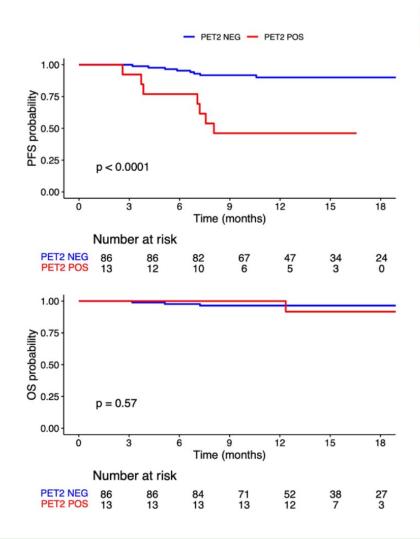
|                           | Ali  | 95% confidence level |
|---------------------------|------|----------------------|
| All                       | 260  |                      |
| True positive             | 33   | 1 <del></del>        |
| True negative             | 203  | <u> </u>             |
| False positive            | 12   |                      |
| False negative            | 12   |                      |
| Positive predictive value | 0.73 | 0.68-0.79            |
| Negative predictive value | 0.94 | 0.92 - 0.97          |
| Sensitivity               | 0.73 | 0.68-0.79            |
| Specificity               | 0.94 | 0.92 - 0.97          |
| Accuracy                  | 0.91 | 0.87-0.94            |


## PET2-adapted treatment design in 4 clinical trials


| Study                            | Pts. | Clinical data                                                  | PET (+2)<br>positive | Intensification<br>(adherence) | Final<br>PET<br>neg | PFS                                    | Toxicity (gr. 3-4)              |
|----------------------------------|------|----------------------------------------------------------------|----------------------|--------------------------------|---------------------|----------------------------------------|---------------------------------|
| Johnson <sup>1</sup><br>(2016)   | 1135 | Age: 32 yrs Bulky: 33% B sympt: 61% Stage III-IV: 59%          | 16%<br>(Deauville)   | BEACOPP<br>(95%)               | 74%                 | 68% (3 yrs)<br>[85% A(B)VD]<br>Δ = 17% | Hematol: 72%<br>Infections: 37% |
| Press <sup>2</sup> (2016)        | 331  | Age: 32 yrs Bulky: 18% B sympt: 62% Stage III-IV: 100%         | 18%<br>(Deauville)   | BEACOPP<br>(92%)               | 55%                 | 64% (2 yrs)<br>[82% ABVD]<br>Δ = 18%   | Hematol: NR<br>Infections: 42%  |
| Zinzani <sup>3</sup><br>(2016)   | 512  | Age: 33 yrs Bulky: 35% B sympt: 64% Stage III-IV: 81%          | 20%<br>(Juweid)      | HDT<br>HSCT<br>(79%)           | 72%                 | 74% (2 yrs)<br>[81% ABVD]<br>Δ = 7%    | Hematol: 72%<br>Infections: 16% |
| Gallamini <sup>4</sup><br>(2018) | 780  | age: 31 yrs<br>Bulky: 58%<br>B sympt: 81%<br>Stage III-IV: 64% | 19%<br>(Deauville)   | BEACOPP<br>(99%)               | 54%                 | 60% (3 yrs)<br>[87% ABVD]<br>Δ = 27%   | Hematol: 76%<br>Infections: 10% |

1. Johnson P. *N Engl J Med*, 2016; 374: 2419-2429 — 2. Press OW. *J Clin Oncol*, 2016; 34: 2020-2027 3. Zinzani PL. *J Clin Oncol*, 2016; 34: 1376-1385 — 4. Gallamini A. *J Clin Oncol*, 2018; 36: 454-462

#### Is PET2 still informative in frontline approaches with new drugs?


ECHELON-1 was <u>not a PET2-adapted trial</u>. Patients with positive PET2 (Deauville 4 and 5) continued on treatment according to randomization. Patients with Deauville 5 at PET2 could be switched to another off-protocol treatment (e.g. escalation).



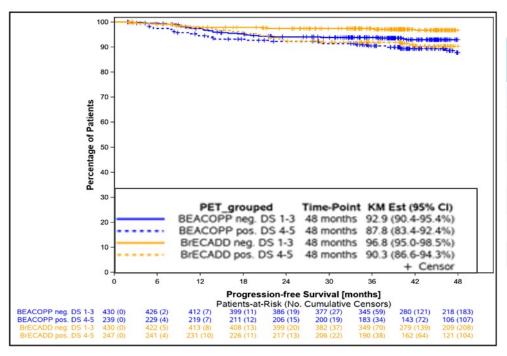


| All patients        | Deaths               | Progression events    | Death + Progression events |
|---------------------|----------------------|-----------------------|----------------------------|
| A-AVD PET2 negative | 9/588 <b>(1.5%)</b>  | 76/588 <b>(12.9%)</b> | 85/588 <b>(14.5%)</b>      |
| ABVD PET2 negative  | 26/578 <b>(4.5%)</b> | 94/578 <b>(16.3%)</b> | 120/578 <b>(20.8%)</b>     |
| A-AVD PET2 positive | 0/47 (0)             | 18/47 <b>(38.3%)</b>  | 18/47 <b>(38.3%)</b>       |
| ABVD PET2 positive  | 3/58 <b>(5.2%)</b>   | 28/58 <b>(48.3%)</b>  | 31/58 <b>(53.4%)</b>       |

| <u>Age 18-39</u>    | Death + Progression<br>events |
|---------------------|-------------------------------|
| A-AVD PET2 negative | 42/366 <b>(11.5%)</b>         |
| ABVD PET2 negative  | 53/324 <b>(16.4%)</b>         |
| A-AVD PET2 positive | 8/24 <b>(33.3%)</b>           |
| ABVD PET2 positive  | 15/28 <b>(53.6%)</b>          |



# Interim-PET predicts progression-free survival in stage IV Hodgkin lymphoma treated with upfront brentuximab vedotin-AVD


| Variable                        | Comparison        | HR   | 95% CI     | p-value  |                      |
|---------------------------------|-------------------|------|------------|----------|----------------------|
| Age                             | >65 vs <=65 years | 1.56 | 0.37-6.49  | 0.542    |                      |
| B symptoms                      | Yes vs No         | 1.64 | 0.34-7.9   | 0.535    |                      |
| Extranodal involvement          | >1 vs 0-1         | 1.86 | 0.59-5.91  | 0.293    | -                    |
| Bulky                           | Yes vs No         | 1.39 | 0.4-4.88   | 0.607    |                      |
| Hasenclever score               | >=4 vs <4         | 1.81 | 0.55-6.02  | 0.331    |                      |
| PET2 DS                         | Pos vs Neg        | 4.64 | 1.47-14.62 | 0.009 ** |                      |
| Treatment delay for neutropenia | Yes vs No         | 3.23 | 0.95-11    | 0.061    | -                    |
|                                 |                   |      |            |          | 0.50 1.0 2.0 4.0 8.0 |

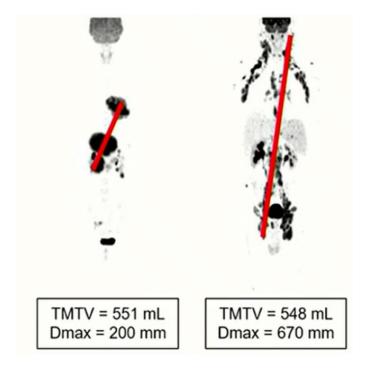
Rusconi C. Leuk Lymphoma, 2025; 66: 879-887

#### Is PET2 still informative in frontline approaches with new drugs?

HD21 (BrECADD vs eBEACOPP) is a <u>PET2-adapted trial</u> in which PET2-negative patients receive 2+2 cycles of either BrECADD or eBEACOPP according to randomization, whereas PET2-positive patients receive 2+4 cycles of therapy.

#### **BrECADD vs eBEACOPP**

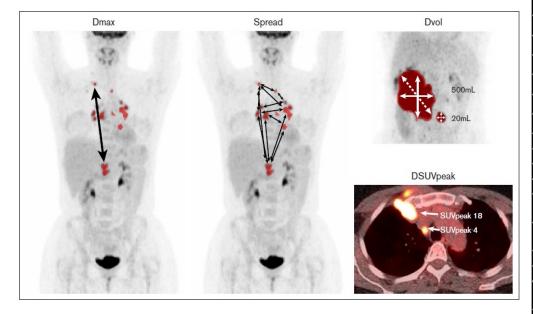



|            | BV-AVD    | PET Adapted<br>BrECADD | Nivo-AVD  |
|------------|-----------|------------------------|-----------|
| Median f/u | 73 months | 48 months              | 25 months |
| PFS        | 83%       | 94.3%                  | 92%       |
| iPET neg   | 85%       | 96.8%                  | NA        |
| iPET pos   | 60.6%     | 90.3%                  | NA        |
| # cycles   | 6         | 4-6                    | 6         |
| OS         | 93.4%     | 98.6%                  | 99%       |
|            |           |                        |           |

#### Prognostic parameters upon baseline PET scan

Baseline PET features could provide additional prognostic parameters in various lymphoma subtypes:

- tumor burden quantification: Total Metabolic Tumor Volume (TMTV);
- tumor dissemination: Distance maximum (Dmax) as the largest distance between two lesions.






# **HIGHLIGHTS IN EMATOLOGIA**

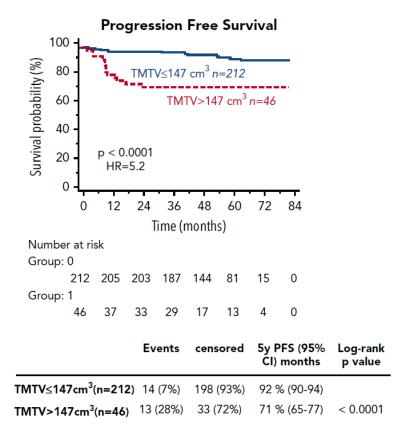
# TREVISO, 7-8 NOVEMBRE 2025

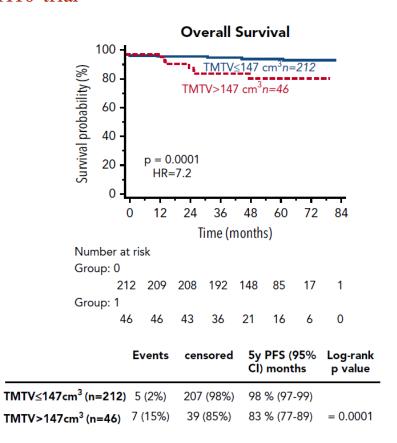
# A radiomics glossary



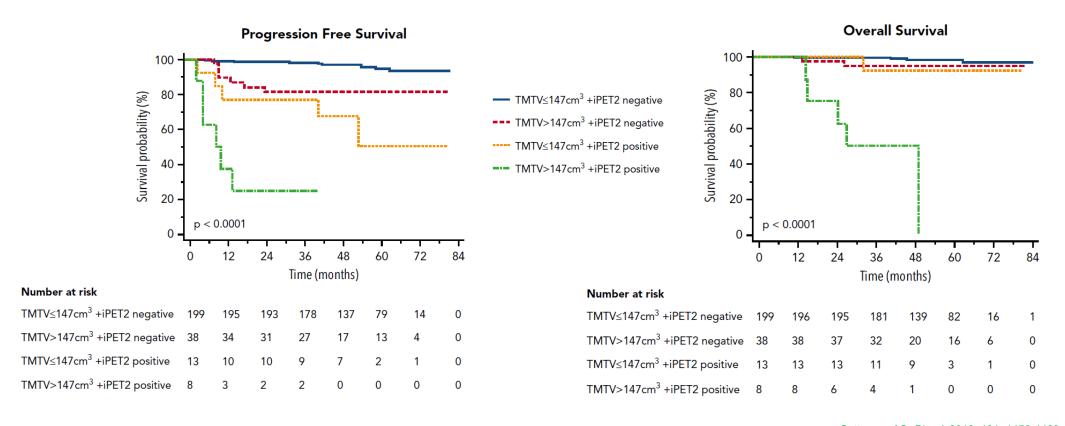
| Variable               | Definition                                                                                                      |
|------------------------|-----------------------------------------------------------------------------------------------------------------|
| MTV                    | Metabolic tumor volume; The FDG-avid tumor volume                                                               |
| TLG                    | Total lesion glycolysis; MTV multiplied by SUVmean                                                              |
| SUVmean                | The mean SUV value of the VOI                                                                                   |
| SUVmax                 | The SUV of the voxel with the highest SUV within the VOI                                                        |
| SUVpeak                | The SUV of the 3mL with the highest SUV within the VOI (global peak)                                            |
| TLRsuvmean             | Tumor to liver ratio of the lesional SUVmean and the liver SUVmean                                              |
| TLR <sub>SUVpeak</sub> | Tumor to liver ratio of the lesional SUVpeak and the liver SUVmean                                              |
| Number of lesions      | The number of separated lesion selections within the VOI                                                        |
| Dmax                   | The maximum distance between two lesions                                                                        |
| DmaxBulk               | The maximum distance between the largest lesion and any other lesion                                            |
| Spread                 | The sum of the distance between all lesions                                                                     |
| SpreadBulk             | The sum of the distance between the largest lesion and all other lesions                                        |
| Dvol                   | The difference in volume between the largest and the smalles lesion                                             |
| VolSpread              | The sum of the differences in volume between all lesions                                                        |
| VolSpreadBulk          | The sum of the differences in volume between the largest lesion and all other lesions                           |
| DSUVmax                | The difference in SUVmax between the lesion with the highest SUVmax and the lesion with the lowest SUVmax       |
| DSUVmaxSum             | The sum of the differences in SUVmax of all lesions                                                             |
| DSUVmaxBulk            | The differences in SUVmax between the largest lesion and all other lesions                                      |
| DSUVmaxSumBulk         | The sum of the differences in SUVmax between the largest lesion and all other lesions                           |
| DSUVmaxSumHot          | The sum of the differences in SUVmax between the lesion with the highest SUVmax and all other lesions           |
| DSUVpeak               | The difference in SUVpeak between the lesion with the highest SUVpeakmax and the lesion with the lowest SUVpeak |
| DSUVpeakSum            | The sum of the differences in SUVpeak of all lesions                                                            |
| DSUVpeakBulk           | The differences in SUVpeak between the largest lesion and all other lesions                                     |
| DSUVpeakSumBulk        | The sum of the differences in SUVpeak between the largest lesion and all other lesions                          |
| DSUVpeakSumHot         | The sum of the differences in SUVpeak between the lesion with the highest SUVpeak and all other lesions         |

Driessen J. Blood Adv, 2023; 7: 6732-6743

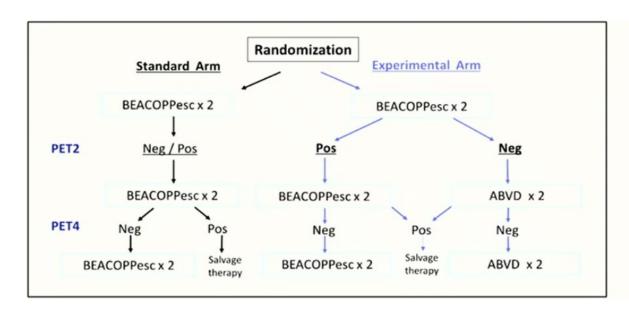

Prognostic value of baseline metabolic tumor volume in early-stage Hodgkin lymphoma in the standard arm of the H10 trial

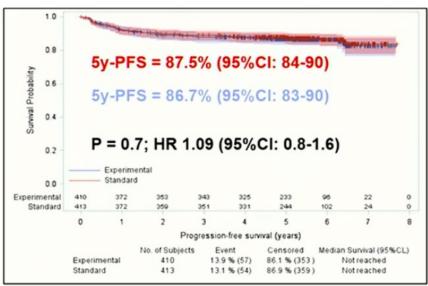

| Characteristics                           | Total population<br>(N = 258) | Low TB TMTV<br>≤147 cm³ (n = 212) | High TB TMTV<br>>147 cm³ (n = 46) | P      |
|-------------------------------------------|-------------------------------|-----------------------------------|-----------------------------------|--------|
| Median age (range), y                     | 31 (15-71)                    | 32 (15-71)                        | 27 (17-63)                        | .009   |
| Age ≥50 y (%)                             | 34 (13)                       | 31 (15)                           | 3 (7)                             | .22    |
| Male, n (%)                               | 129 (50)                      | 104 (49)                          | 25 (54)                           | .62    |
| Nodular sclerosis histology n (%)         | 207 (80)*                     | 168 (79)                          | 37 (80)                           | .68    |
| Ann Arbor stage II, n (%)                 | 198 (77)                      | 157 (74)                          | 41 (89)                           | .03    |
| B symptoms, n (%)                         | 85 (33)                       | 60 (28)                           | 25 (54)                           | .001   |
| Median ESR (interquartile range), mm/h    | 26                            | 23 (12-50)                        | 49 (26-72)                        | .0001  |
| ≥4 Involved sites, n (%)                  | 28 (11)                       | 17 (8)                            | 11 (24)                           | .004   |
| Bulk mediastinum (M/T $\geq$ 0.35), n (%) | 62 (24)                       | 34 (16)                           | 29 (63)                           | <.0001 |
| U EORTC, n (%)                            | 157 (61)                      | 117 (55)                          | 40 (87)                           | .0001  |
| U GSHG, n (%)                             | 177 (69)                      | 133 (63)                          | 44 (96)                           | <.0001 |
| U NCCN, n (%)                             | 164 (64)                      | 121 (57)                          | 43 (93)                           | <.0001 |
| Positive iPET2 (DS 4-5), n (%)            | 21 (8)                        | 13 (6)                            | 8 (17)                            | .028   |

M/T, mass/thoracic ratio.


<sup>\*</sup>Data not available for 2 patients.

Prognostic value of baseline metabolic tumor volume in early-stage Hodgkin lymphoma in the standard arm of the H10 trial




Prognostic value of baseline metabolic tumor volume in early-stage Hodgkin lymphoma in the standard arm of the H10 trial



PROGNOSTIC VALUE OF BASELINE TOTAL
METABOLIC TUMOR VOLUME (TMTV) AND TUMOR
SPREAD (Dmax) IN ADVANCED HODGKIN LYMPHOMA:
ANCILLARY STUDY OF THE AHL2011 TRIAL






PROGNOSTIC VALUE OF BASELINE TOTAL
METABOLIC TUMOR VOLUME (TMTV) AND TUMOR
SPREAD (Dmax) IN ADVANCED HODGKIN LYMPHOMA:
ANCILLARY STUDY OF THE AHL2011 TRIAL

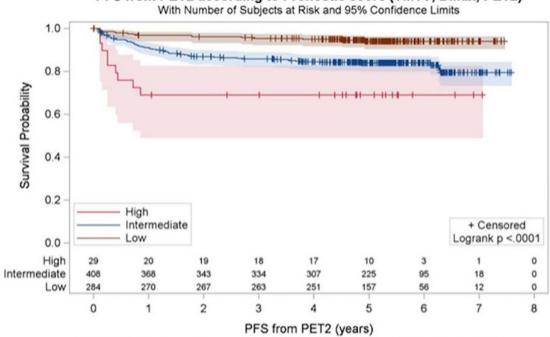
|                          | Median (IQR)  | Cutoff | % patients<br>(out of the 721 pts)        |
|--------------------------|---------------|--------|-------------------------------------------|
| TMTV (mL)                | 210 (123-390) | 220    | <mark>48%</mark> with<br>high TMTV (≥220) |
| Dmax (mm <sup>-1</sup> ) | 220 (160-335) | 325    | <mark>26%</mark> with<br>high Dmax (≥325) |

Two subgroups of patients are identifyable:

- patients with low TMTV and low Dmax;
- patients with either high TMTV and/or high Dmax.

PROGNOSTIC VALUE OF BASELINE TOTAL
METABOLIC TUMOR VOLUME (TMTV) AND TUMOR
SPREAD (Dmax) IN ADVANCED HODGKIN LYMPHOMA:
ANCILLARY STUDY OF THE AHL2011 TRIAL




Kanoun S. Hematol Oncol (18 ICML meeting abstracts), 2025; 43(S3): e70093

PROGNOSTIC VALUE OF BASELINE TOTAL
METABOLIC TUMOR VOLUME (TMTV) AND TUMOR
SPREAD (Dmax) IN ADVANCED HODGKIN LYMPHOMA:
ANCILLARY STUDY OF THE AHL2011 TRIAL

|                                | TM                   | TV                    | Dmax                                |                                   |  |
|--------------------------------|----------------------|-----------------------|-------------------------------------|-----------------------------------|--|
|                                | Low TMTV<br>(<220mL) | High TMTV<br>(≥220mL) | Low Dmax<br>(<325mm <sup>-1</sup> ) | High Dmax (≥325mm <sup>-1</sup> ) |  |
| PET2 positive*                 | 10% (n=37)           | 16% (n=57)            | 11% (n=58)                          | 19% (n=36)                        |  |
| PET2 negative*                 | 90% (n=337)          | 84% (n=290)           | 89% (n=473)                         | 81% (n=154)                       |  |
| P-value<br>(Fisher exact test) | 0.011                |                       | 0.008                               |                                   |  |

<sup>\*</sup>In AHL trial, PET2 evaluations were centrally reviewed and interpreted using modified Deauville score (partial response if residual uptake > 140% liver background)

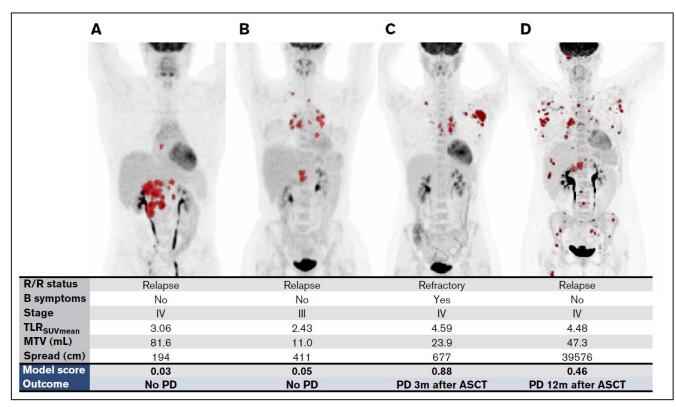
#### PFS from PET2 according to Pronostic score (TMTV, DMax, PET2)



|              |                 | 29 31 % (9) 69 % (20 ) Not reached (0.9; NA)<br>408 16.7 % (68) 83.3 % (340 ) Not reached |              |                         |  |
|--------------|-----------------|-------------------------------------------------------------------------------------------|--------------|-------------------------|--|
|              | No. of Subjects | Event                                                                                     | Censored     | Median Survival (95%CL) |  |
| High         | 29              | 31 % (9)                                                                                  | 69 % (20)    | Not reached (0.9; NA)   |  |
| Intermediate | 408             | 16.7 % (68)                                                                               | 83.3 % (340) | Not reached             |  |
| Low          | 284             | 5.6 % (16)                                                                                | 94.4 % (268) | Not reached             |  |

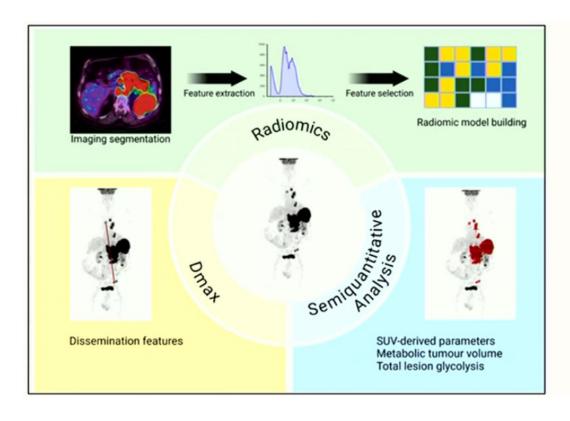
PROGNOSTIC VALUE OF BASELINE TOTAL
METABOLIC TUMOR VOLUME (TMTV) AND TUMOR
SPREAD (Dmax) IN ADVANCED HODGKIN LYMPHOMA:
ANCILLARY STUDY OF THE AHL2011 TRIAL

|                           | No of<br>pts (%) | 5-year PFS | PFS event rate |
|---------------------------|------------------|------------|----------------|
| 0 risk<br>factor          | 284<br>(39%)     | 94%        | 6%             |
| 1 or 2<br>risk<br>factors | 408<br>(57%)     | 84%        | 17%            |
| 3 risk<br>factors         | 29<br>(4%)       | 69%        | 31%            |

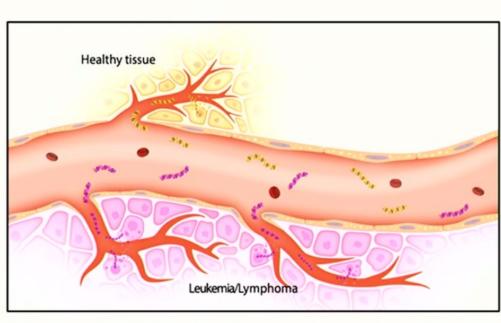

# HIGHLIGHTS IN EMATOLOGIA

#### TREVISO, 7-8 NOVEMBRE 2025

Prognostic model using <sup>18</sup>F-FDG PET radiomics predicts progression-free survival in relapsed/refractory Hodgkin lymphoma


|                     | Training (n = 113) |       | Validation (n = 69) |       | Total (n = 182) |       |         |
|---------------------|--------------------|-------|---------------------|-------|-----------------|-------|---------|
|                     |                    |       |                     |       |                 |       |         |
|                     | No.                | %     | No.                 | %     | No.             | %     | P value |
| Study               |                    |       |                     |       |                 |       | <.001   |
| BV-DHAP             | 58                 | 51    | 0                   | 0     | 58              | 32    |         |
| BV-ICE              | 55                 | 49    | 0                   | 0     | 55              | 30    |         |
| ICE-GVD             | 0                  | 0     | 69                  | 100   | 69              | 38    |         |
| Female sex          | 61                 | 54    | 32                  | 46    | 93              | 51    | .319    |
| Median age, (range) | 30 (1              | 3-65) | 34 (1               | 8-66) | 31 (1           | 3-66) | .175    |
| Primary refractory  | 55                 | 50    | 25                  | 37    | 80              | 45    | .062    |
| Ann Arbor stage     |                    |       |                     |       |                 |       | .002    |
| 1                   | 10                 | 9     | 1                   | 1     | 11              | 6     | .042    |
| II                  | 46                 | 41    | 43                  | 62    | 89              | 49    | .004    |
| III                 | 19                 | 17    | 2                   | 3     | 21              | 12    | .004    |
| IV                  | 38                 | 34    | 23                  | 33    | 61              | 34    | .970    |
| Extranodal disease  | 44                 | 39    | 25                  | 36    | 69              | 38    | .715    |
| B symptoms          | 28                 | 25    | 7                   | 10    | 35              | 20    | .011    |

-2.472 – [2.478 \* (Relapsed=1, refractory=0)] + [1.010 \* (B symptoms = 1, no B symptoms = 0)] – [0.384 \* log(MTV in uL)] + [0.413 \* log(Spread)] + [2.409 \* log(SUVmean/liverSUVmean)].




Ann Arbor stage: not part of the final model as outperformed by spread. *TLR: tumor to liver ratio.* 

# **PET** parameters



# Circulating tumor DNA (ctDNA)



# HIGHLIGHTS IN EMATOLOGIA

## Prognostication for early- and advanced-stage Hodgkin lymphoma... What's new?

- Prognostic models built upon continuous variables better stratify patients according to risk in both advanced- and early-stage disease.
- These models are complex, but can be easily applied at bedside by using tools available online.
- Models based on binary cutoffs are nowadays outdated and reduce their performance in the era of new drugs (e.g. brentuximab vedotin, checkpoint inhibitors) used frontline.
- Interim PET scan maintains its value if PET-adapted strategies are adopted (e.g. stage IIB, III), although its
  predictive value may be questioned when new drugs are applied frontline.
- New PET parameters (radiomics) evaluated at baseline may offer new prognostic interpretations and emerge as novel predictive factors, both in treatment naïve and relapsed/refractory patients.